ORGANOBORON COMPOUNDS

XXVII *. A ¹³C NMR STUDY OF PhB(NMe₂)NHBu^t AND PhB(NMe₂)NHSiMe₃

R. HARRY CRAGG, TIM J. MILLER and DAVID O'N SMITH

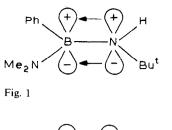
The Chemical Laboratory University of Kent at Canterbury, Canterbury, Kent (Great Britain) (Received February 21st, 1985)

Summary

The rotational barriers (ΔG^{\star}) about the $\geq B-NMe_2$ bond in PhB(NMe₂)NHBu^t and PhB(NMe₂)NHSiMe₃ have been determined by variable temperature ¹³C NMR.

Introduction

For some time we have been investigating the application of ¹³C NMR towards an understanding of the factors affecting the nature of the $p\pi-p\pi$ bonding in aminoboranes [1]. Until our more recent studies the most commonly used method of estimating the boron-nitrogen rotational barrier in aminoboranes, as expressed by ΔG^{\star} , has involved use of variable temperature ¹H NMR. The use of variable temperature ¹³C NMR in estimating the boron-nitrogen rotational barrier in aminoboranes is attractive since the spectra are more easily interpretated than the corresponding ¹H NMR spectra and as a result coalesence temperatures are more easily determined.


Results and discussion

The ¹³C NMR spectra of the title compounds at low temperature show methyl non equivalence with the peaks coalescing at -25° C for butylaminodimethyl-aminophenylborane (A) and 8°C for dimethylaminophenyltrimethylsilylaminoborane (B).

Using the relationship, $\Delta G^* = 4.57 \ Tc \ [9.97 + \log_{10}(\frac{Tc}{\Delta \nu})]$, derived by Pople [2], values of ΔG^* for A and B were obtained from each pair of resonances arising from

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*} For part XXVI see ref. 5.

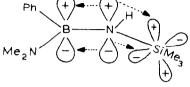


fig. 2

isomer shifts $\Delta \nu$ and coalescence temperature *Tc*. The ΔG^* value for **A**, the first reported value for an aminodialkylaminophenylborane, is higher than values obtained for bisdialkylaminophenylborane, using variable temperature ¹H NMR and, surprisingly, the ΔG^* value obtained for **B** is even higher. This result indicates that $p\pi - p\pi$ bonding between boron and the t-butylamino group is greater than that between boron and the trimethylsilylamino group.

In comparing the ΔG^* results for compounds **A** and **B** it is attractive to suggest that the higher ΔG^* value exhibited by compound **B** is due to the $p\pi - d\pi$ bonding

				1 2/2	
Compound	Carbon	Δ <i>ν</i> (Hz)	Тс	$\Delta G^{\star}(\text{kcal mol}^{-1})$	
PhB CH ₃ (A)	a	82.4	-25	11.86	
PhB CH ₃ CH ₃ (B)	a	92	8	13.5	
$PhB\left(N \begin{array}{c} CH_{3} \\ CH_{3} \end{array}\right)_{2}$	a	33	- 60	10.5 [3,4]	

TABLE 1 SOME ¹³C NMR AND ΔG^* DATA FOR COMPOUNDS **A**, **B** AND PhB(NMe₂)₂

between nitrogen and silicon, as shown in Fig. 2, which reduced the $p\pi - p\pi$ bonding between boron and the nitrogen of the trimethylsilyamino group. This of course cannot occur in compound A (Fig. 1.)

The result of a weakening of the $p\pi-p\pi$ bonding between the boron and nitrogen of the trimethylsilylamino or t-butylamino groups in these compounds would have the effect of increasing the $p\pi-p\pi$ bonding between boron and nitrogen of the dimethylamino group, and this would account for the observed ΔG^* values.

Experimental

The ¹³C NMR spectra were recorded on a JEOL-PS-100 spectrometer using the FT mode and the temperature of the sample was varied by passing a stream of heated air or cold nitrogen over the probe. Some results are listed in Table 1. An error of ± 1 K in *Tc* gives an uncertainty of 0.05 kcal mol⁻¹ in ΔG^* and an error of $\pm 10\%$ in Δ an uncertainty of 0.01 kcal mol⁻¹ in ΔG^* . Since *Tc* is generally accurate to ± 3 K and $\Delta \nu$ to ± 2 Hz the calculated ΔG^* values reported are accurate to within ± 0.25 kcal mol⁻¹.

The compounds used in the investigation were prepared by established methods [6].

References

- 1 C. Brown, R.H. Cragg, T.J. Miller and D. O'N Smith, J. Organomet. Chem., 244 (1983) 209.
- 2 J.A. Pople, W.G. Schneider and H.J. Bernstein, High Resolution NMR, McGraw-Hill, New York, 1959.
- 3 M.J.S. Dewar and P. Rona, J. Am. Chem. Soc., 91 (1969) 2259.
- 4 D. Imbery, A. Jaeschke and H. Friebolin, Org. Magn. Res., 2 (1970) 271.
- 5 Part XXVI. R.H. Cragg, M. Nazery and A.F. Weston, J. Organomet. Chem., 263 (1984) 261.
- 6 R.H. Cragg and T.J. Miller, J. Organomet. Chem., 217 (1981) 283.